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Model Studies Indicate That Copper Phenanthroline Scheme 1
Induces Direct Strand Breaks viaf-Elimination of o}
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Oxidative damage of nucleic acids at the anomeric position of = 0 0

nucleotides is effected by a variety of damaging agents and can 0=P-0-{-8 0=P-0-}-3
arise as a result of formal hydride abstraction, oxidation of the 40 o
pendant nucleobase, or hydrogen atom abstractioh{ Copper
phenanthroline (Cu(OR)and the enediynes (e.g., the neocarzi- Scheme 2
nostatin chromophore, NCS) represent two of the most well 0 0
studied families of DNA damaging agents that oxidize thé-C1 -0-P-0 -0-P-0
position of nucleotides in the biopolymer. Product studies and, o- Kj o- _K]Hzo
in the case of the ened|ynes |sot0p|c labeling experiments suggest 1 — -6

that the initial step in damage is hydrogen atom abstraétion.
Despite the formation of a common radical intermediate, Cu-

Q
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(OP), and the enediynes yield different products (Scheme 1). The
2'-deoxyribonolactone?), an alkaline labile lesion, is produced  gcheme 3
by the enediynes, whereas direct strand breaks result from Cu-

(OP), mediated DNA damage.
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The cause for the apparent bifurcation in the reactivityl of
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obviating the need to proceed through We have probed the

has remained an open question. Recently, a mechanism wasiability of the overall mechanism presented in Scheme 2 by

tentatively put forth to explain the disparate reactivitylof the

presence of these different DNA damaging agents (Scherhe 2).

independently generating a mononucleotide analogug (afl).
Based upon observations made usitly in conjunction with

Although several pathways were considered, it was suggested thastudies on13 (a model for 2), we propose an alternative

in the presence of Cu(OR) is oxidized to the carbocatiorT,
which subsequently undergoes deprotonation to tt&-dehy-
dronucleotide §). The oxidation ofl to 7 by one or more Cu-
(OP), complexes of undefined oxidation state is consistent with
the incorporation of%0 from H,!%0° The 1,2-dehydronucleotide

(8) is the immediate precursor to strand break formation, and it
was suggested that it gives rise to the metastablaranone 8)

and 3-phosphate®) containing DNA fragments via solvolysis,
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explanation that accounts for the distinctive products formed by
Cu(OP) and the enediynes, such as the neocarzinostatin chro-
mophore.

In order for a 1,2'-dehydronucleotide§(or 11) to account for
the observed strand scission products, solvolysis must be complete
on the time scale of typical Cu(OR)leavage reactions (minutes).
It is also worth noting that1 (8) can undergo hydrolysis to yield
the free base anti3 (2) (Scheme 3}° The 1,2-dehydronucle-
otide (11) was produced from phenyl seleniflevia oxidation to
a diastereomeric mixture of selenoxidd®)(by NalQ, at 4°C
in the probe of an NMR spectrometer (Figure 1). Upon warming
to room temperature, the major diastereomel@fjave rise to
11, which showed no evidence for decomposition after 48 h at
25°C, and an additiorld h at 50°C 1! Purified 11 (3 mM) was
then shown to be stable in the presence and absence of Gu(OP)
(6 mM) in HEPES buffer (pH 7.4) for 48 h at 2%, suggesting
that Cu(OP) does not accelerate its decomposition to eithr
or 1312

Given the stability ofL1 under aqueous conditions, we explored
an alternative explanation for the difference between Cu{OP)
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Figure 2. Plot of observed rate constant for the disappearands (3
mM) as a function of Cu(OR)concentration. Inset: Extrapolatéghsq
and half-life as a function of Cu(OP¥oncentration.

to DNA. The effective molarity of noncovalent complexes can
be as high as $6-10’ M.'* Extrapolation of the observed rate
L constant to between 10 and 100 M effective concentration of Cu-

J (OP), would result in a half-life for elimination fromi3 of less

— . , n than 1 min and, if extrapolable ®in DNA, would explain the

6.5 6.0 55 50 formation of direct strand breaks by Cu(@P)Although the
PPM oxidation state of the copper phenanthroline complex (or the
Figure 1. 'H NMR spectra describing the generationldffrom 9 (20 StOlC_hlometry) re_spon5|ble for_ this C_ataly5|_s is unknown, the
mM) via 10in phosphate buffer (0.1 M, pD 7.4). @Jprior to the addition stability of 11, a likely solvolysis candidate, in the presence of

of NalOy (4 °C). (b) After the addition of 1 equiv of Nal((2 h at 4°C, Cu(OP} concentrations that accelerate elimination fraig,
then 22 min at 25C). (c) After 48 h at 25C. IH NMR assigments9; suggests that the complex is acting as a general base catalyst.
5 6.45 (C5), 5.51 (C), 5.04 (C3). 10; & 6.33 (C5), 5.69 (C), 5.29 While the monomeric compounds described above cannot
(C3). 11; 6 6.15 (C5), 5.56 (C2, 5.26 (C3). unequivocally model the reaction between Cu(Oé)d DNA,

their reactivity leads us to propose that the differences in the
and enediyne reactivity. We considered the possibility ghiat effects of the enediynes and Cu(@®n nucleic acids can be
formed by both the enediynes and Cu(@Bit that the nonco- ~ €xplained by applying Ockham’s razor or the principle of
valently bound copper complex catalyzesftglimination to3. mechanistic _econom&? We propose that the structurally distinct
Such a mechanism is consistent with the obset@®eincorpora- DNA damaging agents referred to above prod2es a common
tion in the lactone from K20 by including the proposed one- |ntermeQ|ate (possibly via different mechanisms), which when
electron oxidation of the initially formed radic#. Consequently, ~ formed in the presence of noncovalently bound CugQipgler-
the rate of decomposition df3 was examined in HEPES buffer ~ 90€S sgbsequent eI|m|r_1at|c_)n. These re_sults_ suggest that similar
over a range of Cu(ORgoncentrations (Figure 25. The rate of cata[yS|s may be operating in other nucleic acid Qamage processes
disappearance of3 was quantitatively accounted for by the mediated by coordination complexes where possible alkaline labile
appearance of phenyl phosphate and obeyed first-order kineticd€Sions are not observéd.
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