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Oxidative damage of nucleic acids at the anomeric position of
nucleotides is effected by a variety of damaging agents and can
arise as a result of formal hydride abstraction, oxidation of the
pendant nucleobase, or hydrogen atom abstraction (1).1-7 Copper
phenanthroline (Cu(OP)2) and the enediynes (e.g., the neocarzi-
nostatin chromophore, NCS) represent two of the most well
studied families of DNA damaging agents that oxidize the C1′-
position of nucleotides in the biopolymer. Product studies and,
in the case of the enediynes, isotopic labeling experiments suggest
that the initial step in damage is hydrogen atom abstraction.5,6

Despite the formation of a common radical intermediate, Cu-
(OP)2 and the enediynes yield different products (Scheme 1). The
2′-deoxyribonolactone (2), an alkaline labile lesion, is produced
by the enediynes, whereas direct strand breaks result from Cu-
(OP)2 mediated DNA damage.

The cause for the apparent bifurcation in the reactivity of1
has remained an open question. Recently, a mechanism was
tentatively put forth to explain the disparate reactivity of1 in the
presence of these different DNA damaging agents (Scheme 2).8

Although several pathways were considered, it was suggested that
in the presence of Cu(OP)2, 1 is oxidized to the carbocation (7),
which subsequently undergoes deprotonation to the 1′,2′-dehy-
dronucleotide (8). The oxidation of1 to 7 by one or more Cu-
(OP)2 complexes of undefined oxidation state is consistent with
the incorporation of18O from H218O.9 The 1′,2′-dehydronucleotide
(8) is the immediate precursor to strand break formation, and it
was suggested that it gives rise to the metastable 3′-furanone (3)
and 5′-phosphate (6) containing DNA fragments via solvolysis,

obviating the need to proceed through2. We have probed the
viability of the overall mechanism presented in Scheme 2 by
independently generating a mononucleotide analogue of8 (11).
Based upon observations made using11, in conjunction with
studies on13 (a model for 2), we propose an alternative
explanation that accounts for the distinctive products formed by
Cu(OP)2 and the enediynes, such as the neocarzinostatin chro-
mophore.
In order for a 1′,2′-dehydronucleotide (8 or 11) to account for

the observed strand scission products, solvolysis must be complete
on the time scale of typical Cu(OP)2 cleavage reactions (minutes).
It is also worth noting that11 (8) can undergo hydrolysis to yield
the free base and13 (2) (Scheme 3).10 The 1′,2′-dehydronucle-
otide (11) was produced from phenyl selenide9 via oxidation to
a diastereomeric mixture of selenoxides (10) by NaIO4 at 4 °C
in the probe of an NMR spectrometer (Figure 1). Upon warming
to room temperature, the major diastereomer of10 gave rise to
11, which showed no evidence for decomposition after 48 h at
25 °C, and an additional 5 h at 50°C.11 Purified11 (3 mM) was
then shown to be stable in the presence and absence of Cu(OP)2

(6 mM) in HEPES buffer (pH 7.4) for 48 h at 25°C, suggesting
that Cu(OP)2 does not accelerate its decomposition to either12
or 13.12
Given the stability of11under aqueous conditions, we explored

an alternative explanation for the difference between Cu(OP)2
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and enediyne reactivity. We considered the possibility that2 is
formed by both the enediynes and Cu(OP)2 but that the nonco-
valently bound copper complex catalyzes itsâ-elimination to3.
Such a mechanism is consistent with the observed18O-incorpora-
tion in the lactone from H218O by including the proposed one-
electron oxidation of the initially formed radical.8a Consequently,
the rate of decomposition of13was examined in HEPES buffer
over a range of Cu(OP)2 concentrations (Figure 2).13 The rate of
disappearance of13 was quantitatively accounted for by the
appearance of phenyl phosphate and obeyed first-order kinetics
for two half-lives. Higher conversion of13 led to a deviation
from first-order decay, which was attributed to inhibition by
coordination of Cu(OP)2 with the product phenyl phosphate. The
inhibition observed by added phenyl phosphate (3 mM) was
consistent with this hypothesis. The observed rate constant for
the disappearance of13 varied linearly with Cu(OP)2 concentra-
tion but was unaffected by CuSO4 (which precipitates at pH 7.4)
or phenanthroline by themselves. The observed rate constant for
the disappearance of13 approximately doubles between 0 and 6
mM Cu(OP)2, and the significance of this increase is evident when
one considers the potential effective molarity of Cu(OP)2 bound

to DNA. The effective molarity of noncovalent complexes can
be as high as 105-107 M.14 Extrapolation of the observed rate
constant to between 10 and 100 M effective concentration of Cu-
(OP)2 would result in a half-life for elimination from13 of less
than 1 min and, if extrapolable to2 in DNA, would explain the
formation of direct strand breaks by Cu(OP)2. Although the
oxidation state of the copper phenanthroline complex (or the
stoichiometry) responsible for this catalysis is unknown, the
stability of 11, a likely solvolysis candidate, in the presence of
Cu(OP)2 concentrations that accelerate elimination from13,
suggests that the complex is acting as a general base catalyst.
While the monomeric compounds described above cannot

unequivocally model the reaction between Cu(OP)2 and DNA,
their reactivity leads us to propose that the differences in the
effects of the enediynes and Cu(OP)2 on nucleic acids can be
explained by applying Ockham’s razor or the principle of
mechanistic economy.15 We propose that the structurally distinct
DNA damaging agents referred to above produce2 as a common
intermediate (possibly via different mechanisms), which when
formed in the presence of noncovalently bound Cu(OP)2 under-
goes subsequent elimination. These results suggest that similar
catalysis may be operating in other nucleic acid damage processes
mediated by coordination complexes where possible alkaline labile
lesions are not observed.16
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Figure 1. 1H NMR spectra describing the generation of11 from 9 (20
mM) via 10 in phosphate buffer (0.1 M, pD 7.4). (a)9 prior to the addition
of NaIO4 (4 °C). (b) After the addition of 1 equiv of NaIO4 (2 h at 4°C,
then 22 min at 25°C). (c) After 48 h at 25°C. 1H NMR assigments:9;
δ 6.45 (C5), 5.51 (C1′), 5.04 (C3′). 10; δ 6.33 (C5), 5.69 (C1′), 5.29
(C3′). 11; δ 6.15 (C5), 5.56 (C2′), 5.26 (C3′).

Figure 2. Plot of observed rate constant for the disappearance of13 (3
mM) as a function of Cu(OP)2 concentration. Inset: Extrapolatedkobsd
and half-life as a function of Cu(OP)2 concentration.
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